A novel early onset phenotype in a zebrafish model of merosin deficient congenital muscular dystrophy

نویسندگان

  • Sarah J. Smith
  • Jeffrey C. Wang
  • Vandana A. Gupta
  • James J. Dowling
چکیده

Merosin deficient congenital muscular dystrophy (MDC1A) is a severe neuromuscular disorder with onset in infancy that is associated with severe morbidities (particularly wheelchair dependence) and early mortality. It is caused by recessive mutations in the LAMA2 gene that encodes a subunit of the extracellular matrix protein laminin 211. At present, there are no treatments for this disabling disease. The zebrafish has emerged as a powerful model system for the identification of novel therapies. However, drug discovery in the zebrafish is largely dependent on the identification of phenotypes suitable for chemical screening. Our goal in this study was to elucidate novel, early onset abnormalities in the candyfloss (caf) zebrafish, a model of MDC1A. We uncovered and characterize abnormalities in spontaneous coiling, the earliest motor movement in the zebrafish, as a fully penetrant change specific to caf mutants that is ideal for future drug testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Splice Site Mutation in Laminin-α2 Results in a Severe Muscular Dystrophy and Growth Abnormalities in Zebrafish

Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A) is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2). Laminin-α2 is an extracellular matrix protein that...

متن کامل

Merosin-deficient congenital muscular dystrophy type 1A.

Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is the most common form of congenital muscular dystrophy. MDC1A is caused by mutation of the laminin alpha-2 gene (LAMA2), localized to chromosome 6q22-23. The diagnosis of merosin-deficient CMD is based on the clinical findings of severe congenital hypotonia, weakness, with high blood levels of creatine kinase, WM abnormalities, a...

متن کامل

Congenital muscular dystrophy type 1A with residual merosin expression

Congenital muscular dystrophy type 1A (MDC1A) is an autosomal recessive disorder characterized by hypotonia, elevated serum creatine kinase level, delayed motor milestones, white matter changes observed by brain magnetic resonance imaging, and normal intelligence. A mutation in the laminin α2 (LAMA2) gene, located at 6q22-23, is a genetic cause of MDC1A. Patients have merosin (laminin α2)-defic...

متن کامل

Merosin-deficient congenital muscular dystrophy in an Omani boy.

Merosin-deficient congenital muscular dystrophy is an autosomal recessive disease that can manifest differently in different ethnic groups. This often presents as a floppy infant, and normal mental development. The creatine kinase is usually elevated with white matter abnormalities on brain imaging. In this report, we describe an infant with Merosin-deficient congenital muscular dystrophy who p...

متن کامل

Bortezomib Does Not Reduce Muscular Dystrophy in the dy2J/dy2J Mouse Model of Laminin α2 Chain-Deficient Muscular Dystrophy

Congenital muscular dystrophy with laminin α2 chain-deficiency, also known as MDC1A, is a severe neuromuscular disorder for which there is no cure. Patients with complete laminin α2 chain-deficiency typically have an early onset disease with a more severe muscle phenotype while patients with residual laminin α2 chain expression usually have a milder disease course. Similar genotype-phenotype co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017